

TO-252 Pin Definition: 1. Gate 2. Drain 3. Source

PRODUCT SUMMARY				
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)		
500	2.7 @ V _{GS} =10V	1.5		

General Description

The TSM4ND50 N-Channel enhancement mode Power MOSFET is produced by planar stripe DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.

Features

- Low gate charge typical @ 12nC
- Low Crss typical @ 10pF
- Fast Switching
- 100% avalanche tested
- Improved dv/dt capability
- ESD Protection

Ordering Information

Part No.	Package	Packing
TSM4ND50CP RO	TO-252	2,500pcs / 13" Reel

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta=25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	500	V
Gate-Source Voltage	V_{GS}	±30	V
Continuous Drain Current	I _D	3	А
Pulsed Drain Current	I _{DM}	12	А
Continuous Source Current (Diode Conduction)	Is	3	А
Peak Diode Recovery (Note 2)	dv/dt	4.5	V/ns
Single Pulse Drain to Source Avalanche Energy (Note 3)	E _{AS}	120	mJ
Total Power Dissipation @T _c =25°C	P _{DTOT}	45	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	Rθ _{JC}	2.78	°C/W
Thermal Resistance - Junction to Ambient	RƏ _{JA}	100	°C/W

Notes: Surface mounted on FR4 board t \leq 10sec

Electrical Specifications (Ta = 25°C unless otherwise noted)

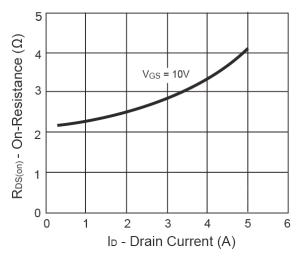
Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250uA$	BV _{DSS}	500			V
Drain-Source On-State Resistance	V _{GS} = 10V, I _D = 1.5A	R _{DS(ON)}		2.3	2.7	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 uA$	V _{GS(TH)}	3.0		4.5	V
Zero Gate Voltage Drain Current	V _{DS} = 500V, V _{GS} = 0V	I _{DSS}			1	uA
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±10	uA
Forward Transconductance	V _{DS} = 15V, I _D = 1.5A	g _{fs}		1.5		S
Dynamic ^b						
Total Gate Charge		Qg		12		
Gate-Source Charge	$V_{DS} = 400V, I_D = 3A,$	Q_gs		3.4		nC
Gate-Drain Charge	V _{GS} = 10V	Q _{gd}		6.4		1
Input Capacitance		C _{iss}		310		
Output Capacitance	$V_{\rm DS} = 25V, V_{\rm GS} = 0V,$	C _{oss}		49		pF
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		10		
Switching ^c	·					
Turn-On Delay Time		t _{d(on)}		22		
Turn-On Rise Time	V _{GS} = 10V, I _D = 1.5A,	t _r		9		
Turn-Off Delay Time	V_{DD} = 250V, R_{G} = 4.7 Ω	t _{d(off)}		9		- nS
Turn-Off Fall Time		t _f		4.5		
Source Drain Diode	·					
Source Drain Current		I _{SD}			3	А
Diode Forward Voltage	I _S = 3A, V _{GS} = 0V	V _{SD}			1.6	V
Reverse Recovery Time	$V_{DD} = 40V, I_{S} = 3A,$	t _{fr}		315		nS
Reverse Recovery Charge	di/dt = 100A/us, T _J =150°C	Q _{fr}		940		uC
Reverse Recovery Current	(See test circuit)	I _{RRM}		7.2		Α

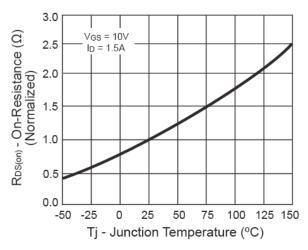
Notes:

1. Pulse test: pulse width \leq 300uS, duty cycle \leq 2%

2. I_{SD} <4.5A, di/dt<200A/us, VDD<BV_{DSS}

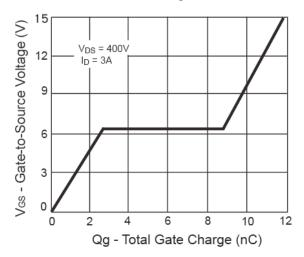
3. Starting V_{DD} = 50V, H=27mH, T_J=25°C


4. Pulse width limited by safe operating area.

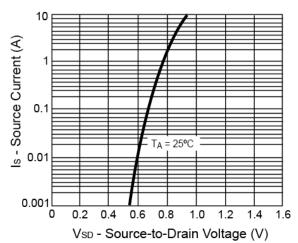



Output Characteristics 6 $V_{GS} = 10V$ 5 Ip - Drain Current (A) 8V 4 7V 3 2 6.5V 1 6V 0 15 10 20 30 0 5 25 VDS - Drain-to-Source Voltage (V)

On-Resistance vs. Drain Current

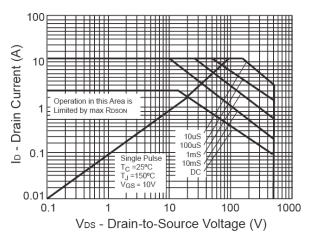


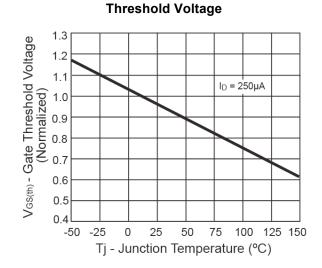
On-Resistance vs. Junction Temperature



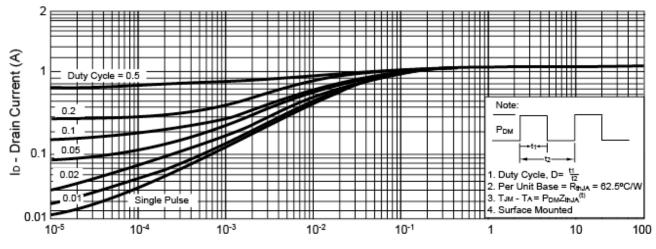
Gate Charge

Source-Drain Diode Forward Voltage

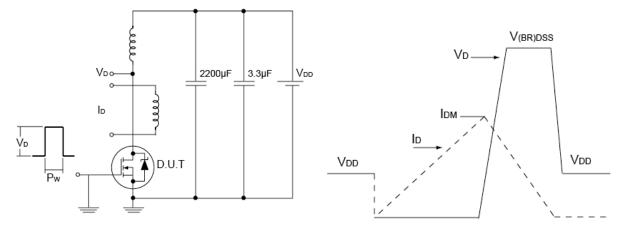


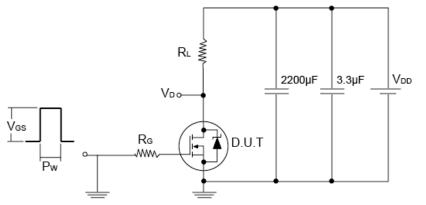

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

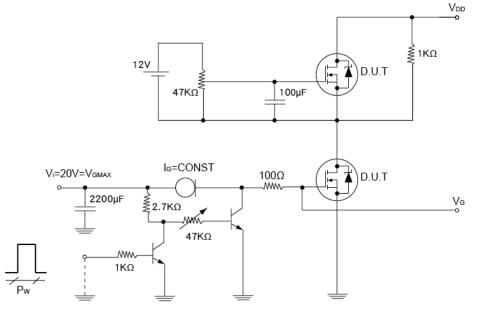
(I) (I)


On-Resistance vs. Gate-Source Voltage

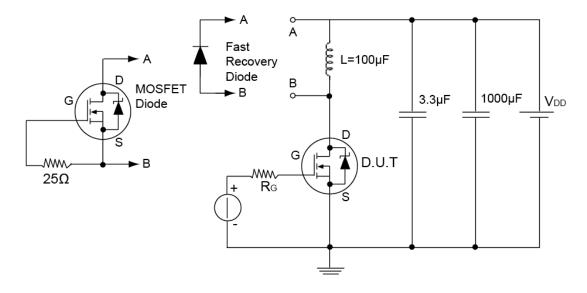
Maximum Safe Operating Area


Normalized Thermal Transient Impedance, Junction-to-Ambient

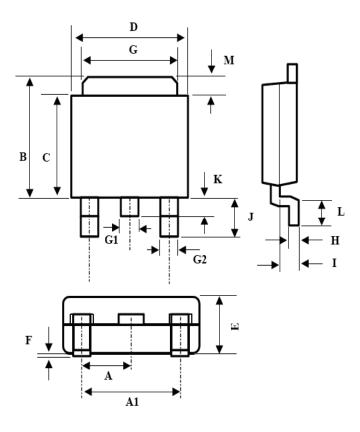

Square Wave Pulse Duration (sec)


Unclamped Inductive Load Test Circuit and Waveform

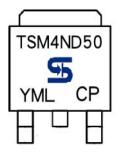
Switching Time Test Circuits for Resistive Load



Gate Charge Test Circuit



Test Circuit for Inductive Load Switching and Diode Recovery Times



SOT-252 Mechanical Drawing

	TO-252 DIMENSION					
	DIM		INCHES			
DIN	MIN	MAX	MIN	MAX		
А	2.3E	BSC	0.09BSC			
A1	4.6E	BSC	0.18	BSC		
В	6.80	7.20	0.268	0.283		
С	5.40	5.60	0.213	0.220		
D	6.40	6.65	0.252	0.262		
Е	2.20	2.40	0.087	0.094		
F	0.00	0.20	0.000	0.008		
G	5.20	5.40	0.205	0.213		
G1	0.75	0.85	0.030	0.033		
G2	0.55	0.65	0.022	0.026		
Н	0.35	0.65	0.014	0.026		
I	0.90	1.50	0.035	0.059		
J	2.20	2.80	0.087	0.110		
K	0.50	1.10	0.020	0.043		
L	0.90	1.50	0.035	0.059		
М	1.30	1.70	0.051	0.67		

Marking Diagram

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.